ECG1 Mathématiques 2024-25

Chapitre 20

Comparaison locale des fonctions et développements limités

I Comparaison locale des fonctions

Dans cette partie, on élargit les notions de négligeabilité et d'équivalence à des fonctions.

1. Voisinage d'un point

Définition - Voisinage

Soit I un intervalle.

- * Soit $a \in I$. On appelle voisinage de a dans I un intervalle de la forme $[b, c] \cap I$ avec b < a < c.
- \star Un voisinage $de + \infty$ dans I est un intervalle de la forme $]b, +\infty[$ inclus dans I.
- \star Un voisinage de $-\infty$ dans I est un intervalle de la forme $]-\infty,c[$ inclus dans I.

Dans la suite, f,g et h désignent trois fonctions définies sur un voisinage V de a dans un intervalle I de \mathbb{R} , avec $a \in I \cup \{\pm \infty\}$.

2. Négligeabilité

a. Définition

Définition - Négligeabilité

On suppose que la fonction g ne s'annule pas sur un voisinage de a, sauf éventuellement en a. On dit que f est négligeable devant g en a si

$$\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} 0.$$

Dans ce cas, on note f(x) = o(g(x)), ou f(x) = o(g(x)), ou plus simplement f = o(g(x)).

On écrit parfois f = o(g) sans préciser le point a lorsque le contexte est clair.

Cas général: plus généralement, quelle que soit la fonction g, on dit que f est négligeable devant g en a s'il existe une fonction ε définie sur un voisinage V de a telle que

- $\star f(x) = \varepsilon(x)g(x)$ pour tout $x \in V$,
- $\star \ \varepsilon(x) \xrightarrow[r \to a]{} 0.$

Exemples.

1.
$$x^2 + \sqrt{x} = 0$$
 (x^3) et $(x-1)^2 = 0$ o $(\sqrt{x-1})$.

En effet,
$$\frac{x^2 + \sqrt{x}}{x^3} = \frac{1}{x} + \frac{1}{x^{5/2}} \underset{x \to +\infty}{\longrightarrow} 0$$
. Par ailleurs, $\frac{(x-1)^2}{\sqrt{x-1}} = (x-1)^{3/2} \underset{x \to 1}{\longrightarrow} 0$.

2. Si $\alpha, \beta \in \mathbb{R}$ avec $\alpha < \beta$, alors $x^{\alpha} = \underset{x \to +\infty}{=} o(x^{\beta})$ et $x^{\beta} = \underset{x \to 0}{=} o(x^{\alpha})$.

En effet,
$$\frac{x^{\alpha}}{x^{\beta}} = \frac{1}{x^{\beta-\alpha}} \xrightarrow[x \to +\infty]{} 0 \text{ car } \beta - \alpha > 0$$
. Par ailleurs $\frac{x^{\beta}}{x^{\alpha}} = x^{\beta-\alpha} \xrightarrow[x \to 0]{} 0 \text{ car } \beta - \alpha > 0$.

3. On a f(x) = 0 o (1) si et seulement si $f(x) \to 0$, et de manière plus générale pour $\ell \in \mathbb{R}$,

$$f(x) \underset{x \to a}{\longrightarrow} \ell$$
 ssi $f(x) \underset{x \to a}{=} \ell + o(1)$.

ECG1 Mathématiques 2024-25

Comme dans le cas des suites, il convient de prendre garde à cette notation : il ne faut pas voir l'écriture = o () comme une vraie égalité. Par exemple, on a $x^2 = o(1)$ et x = o(1), mais bien sûr $x^2 \neq x$.

Les résultats sur les croissances comparées peuvent être réécrits de la manière suivante.

Proposition - Croissances comparées

- au voisinage de $+\infty$: $(\ln x)^{\alpha} = o(x^{\beta})$, et $x^{\beta} = o(e^{\gamma x})$,
 au voisinage de 0^{+} : $|\ln x|^{\alpha} = o(\frac{1}{x^{\beta}})$.

Exemple. On a $x = o(e^{x^2})$.

En effet, par croissances comparées on a $\frac{\sqrt{y}}{e^y} \xrightarrow[y \to +\infty]{} 0$, et $x^2 \xrightarrow[x \to +\infty]{} +\infty$, donc $\frac{x}{e^{x^2}} \xrightarrow[x \to +\infty]{} 0$, ce qui conclut.

b. Règles de calcul

Les règles de calcul suivantes découlent directement de la définition.

Proposition - Règles de calculs

Au voisinage de a, on a les propriétés suivantes.

i. Si
$$f = o(h)$$
 et $g = o(h)$, alors $\alpha f + \beta g = o(h)$ pour tous $\alpha, \beta \in \mathbb{R}$.

- ii. Si f = o(g), alors fh = o(gh).
- iii. Si f = o(g) et g = o(h), alors f = o(h) (transitivité).

Remarque. En particulier, on a les relations suivantes.

- \star o $(f) \pm$ o (f) = o (f). Par exemple, o (x) o (x) = o (x).
- \star Si f = o(g), alors o(f) + o(g) = o(g).

Exemples. Si $f(x) = x + o(x^2)$ et $g(x) = x^2 + o(x^2)$, alors $f(x) + g(x) = x + x^2 + o(x^2)$. – Si $f(x) \underset{x\to 0}{=} x + o(x^2)$, alors $f(x) \ln x = x \ln x + o(x^2 \ln x)$. - On a $o(x) + o(x^2) = o(x)$.

Equivalence 3.

Définition

Définition - Equivalence des fonctions

On suppose que g ne s'annule pas sur un voisinage de a, sauf éventuellement en a, avec dans ce cas f(a) = 0. On dit que f est équivalente à g en a si

$$\frac{f(x)}{g(x)} \underset{x \to a}{\longrightarrow} 1.$$

Dans ce cas, on note $f(x) \underset{x \to a}{\sim} g(x)$, ou $f(x) \underset{a}{\sim} g(x)$, ou plus simplement $f \underset{a}{\sim} g$. On note parfois $f \sim g$ sans préciser le point a lorsque le contexte est clair.

Cas général: plus généralement, quelle que soit la fonction g, on dit que f est équivalente à g en a s'il existe une fonction α définie sur un voisinage V de a telle que

$$\star f(x) = \alpha(x)g(x)$$
 pour tout $x \in V$,

ECG1 Mathématiques 2024-25

$$\star \ \alpha(x) \xrightarrow[x \to a]{} 1.$$

Exemples.

- 1. On a $x^2 + 1 + \frac{1}{x} \sim \frac{1}{x}$, et $x^2 + 1 + \frac{1}{x} \sim x^2$. En effet, $\frac{x^2+1+\frac{1}{x}}{\frac{1}{x}} = x^3+x+1 \xrightarrow[x\to 0]{} 1$, et $\frac{x^2+1+\frac{1}{x}}{x^2} = 1+\frac{1}{x^2}+\frac{1}{x^3} \xrightarrow[x\to +\infty]{} 1$.
- 2. Une fonction polynomiale est équivalente à son terme de plus bas degré en 0 et à son terme de plus haut degré en $+\infty$.

Proposition - Caractérisation de la convergence vers un réel non nul avec l'équivalence

Soient f une fonction réelle et $\ell \in \mathbb{R}^*$. On a

$$f(x) \xrightarrow[x \to a]{} \ell$$
 ssi $f(x) \sim \ell$.

Démonstration. Il suffit de remarquer que si $\ell \neq 0$, alors $f(x) \xrightarrow[x \to a]{} \ell$ ssi $\frac{f(x)}{\ell} \xrightarrow[x \to a]{} 1$.

Comme pour les suites, si $\ell = 0$, le résultat n'est pas vrai : $f(x) \sim 0$ veut dire que f est nulle au voisinage de a.

Proposition - Equivalence et négligeabilité

Soient f et g deux fonctions réelles. On a

$$f \sim g$$
 ssi $f = g + o(g)$.

Démonstration.

- Si $f \sim g$, alors f est de la forme $f = \alpha g$ sur un voisinage V de a, où $\alpha(x) \xrightarrow[x \to a]{} 1$. En posant $\varepsilon : x \mapsto \alpha(x) 1$, on a alors $f(x) = (1 + \varepsilon(x))g(x) = g(x) + \varepsilon(x)g(x) = g(x) + o(g(x)) \operatorname{car} \varepsilon(x) \underset{x \to a}{\longrightarrow} 0.$
- Si g = g + o(g), alors f est de la forme $f = g + \varepsilon g$ sur un voisinage de a, où $\varepsilon(x) \xrightarrow[x \to a]{} 0$. On pose cette fois $\alpha: x \mapsto 1 + \varepsilon(x)$, et on obtient que $f = \alpha g$ au voisinage de a, avec $\alpha(x) \xrightarrow{\pi} 1$.

Remarque. Comme pour les suites, si $f \sim g$ et g est positive sur un voisinage de a, alors f est positive sur un voisinage

Proposition - Calcul de limite à l'aide d'un équivalent

Si $f \sim g$ et si $\lim_{x \to a} g(x) = \ell \in \mathbb{R} \cup \{\pm \infty\}$, alors $\lim_{x \to a} f(x) = \ell$.

Exemple. Si $P: x \mapsto \sum_{k=0}^{p} a_k x^k$ une fonction polynomiale de degré p $(a_p \neq 0)$, alors $P(x) \sim a_p x^p$. Ainsi, la limite de $P(x) \sim a_p x^p$. en $+\infty$ est donnée par le terme dominant.

Règles de calcul

Les règles de calcul suivantes découlent directement de la définition.

Proposition - Règles de calcul

Soient trois fonctions f,g et h définies au voisinage de a telles que $f \sim g$. On a :

- Symétrie : $g \sim_a f$. Transitivité : si de plus $g \sim_a h$ alors $f \sim_a h$.
- Produit : $fh \sim_a gh$.

П

ECG1 Mathématiques 2024-25

- Quotient : si g ne s'annule pas au voisinage de a sauf éventuellement en $a, \frac{1}{f} \sim \frac{1}{g}$
- Puissance : si $n \in \mathbb{N}$, $f^n \sim_a g^n$.

 Puissance réelle : si $\alpha \in \mathbb{R}$ et que g est strictement positive au voisinage de a, $f^{\alpha} \sim_a g^{\alpha}$.

 Si $h =_{x \to a} o(g)$, alors $h =_{x \to a} o(f)$.
- Si g = o(h), alors f = o(h).

- L'équivalence n'est pas compatible avec la somme : on ne somme pas des équivalents!

Par exemple,
$$x + \frac{1}{x} \underset{+\infty}{\sim} x$$
 et $2 - x \underset{+\infty}{\sim} -x$, mais $2 + \frac{1}{x} \underset{+\infty}{\not\sim} 0$.

- L'équivalence n'est pas compatible avec la composition : on ne compose pas les équivalents!

Par exemple,
$$x+1 \underset{+\infty}{\sim} x$$
, mais $e^{x+1} \underset{+\infty}{\not\sim} e^x$, car $\frac{e^{x+1}}{e^x} = e$ pour tout x .

Exemple. Étude de la limite en $+\infty$ de $x \mapsto \frac{x^3 - e^x + 3}{r^2 + 1}$.

Comme $x^3 + 3 = o(e^x)$ par croissances comparées, on a $x^3 - e^x + 3 \sim -e^x$. Ainsi,

$$\frac{x^3 - \mathrm{e}^x + 3}{x^2 + 1} \; \underset{+\infty}{\sim} \; \frac{-\mathrm{e}^x}{x^2}, \quad \text{donc} \quad \lim_{x \to +\infty} \frac{x^3 - \mathrm{e}^x + 3}{x^2 + 1} \; = \; -\infty.$$

Equivalents usuels

Comme pour les suites, ces équivalents usuels sont à connaître par cœur. Ils sont presque tous basés sur le fait que si une fonction f est dérivable en a et $f'(a) \neq 0$ alors

$$f(x) - f(a) \sim_a f'(a)(x - a).$$

Proposition - Équivalents usuels au voisinage de 0

Au voisinage de 0,
$$\ln(1+x) \underset{0}{\sim} x, \qquad \sin(x) \underset{0}{\sim} x, \qquad \tan(x) \underset{0}{\sim} x, \qquad \forall \alpha \in \mathbb{R}, \quad (1+x)^{\alpha} - 1 \underset{0}{\sim} \alpha x.$$

$$e^{x} - 1 \underset{0}{\sim} x, \qquad \cos(x) - 1 \underset{0}{\sim} -\frac{x^{2}}{2}, \qquad \arctan(x) \underset{0}{\sim} x,$$

Exemples.

1. Étude de la limite en 0 de $\frac{e^x - 1}{\ln(1 + x)}$.

On a
$$\frac{e^x - 1}{\ln(1+x)} \sim \frac{x}{x} = 1$$
, donc $\lim_{x \to 0} \frac{e^x - 1}{\ln(1+x)} = 1$.

2. Recherche d'un équivalent de $\ln\left(1+\frac{1}{x}\right)$ en $+\infty$.

Comme
$$\frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$$
, on a $\ln \left(1 + \frac{1}{x}\right) \underset{+\infty}{\sim} \frac{1}{x}$.

3. Étude de la limite en $+\infty$ de $\left(1+\frac{1}{x}\right)^x$.

D'après le point précédent, on a $x \ln \left(1 + \frac{1}{x}\right) \underset{+\infty}{\sim} x \frac{1}{x} = 1$, donc $x \ln \left(1 + \frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 1$. Par composition, on en déduit que $\left(1+\frac{1}{x}\right)^x = e^{x \ln\left(1+\frac{1}{x}\right)} \xrightarrow[x \to +\infty]{} e^{x}$

ECG1 Mathématiques

2024-25

4. Étude de la limite en
$$+\infty$$
 de $f: x \mapsto \frac{\sqrt{1 + \frac{1}{x^2} e^{\frac{1}{x}}} - 1}{\ln\left(1 + \frac{1}{x^2}\right)}$.

$$f(x) \underset{+\infty}{\sim} \frac{\frac{1}{2x^2} \operatorname{e}^{\frac{1}{x}}}{\frac{1}{x^2}} \quad \operatorname{car} \ \frac{1}{x^2} \operatorname{e}^{\frac{1}{x}} \underset{x \to +\infty}{\longrightarrow} 0 \ \ \operatorname{et} \ \ \frac{1}{x^2} \underset{x \to +\infty}{\longrightarrow} 0, \quad \operatorname{donc} \ \ f(x) \sim \frac{\operatorname{e}^{\frac{1}{x}}}{2}.$$

On en déduit que la limite existe, et vaut $\frac{1}{2}.$

5. Déterminons la limite en 0^+ de $\frac{x^{2x}-1}{x^2}$. Comme $x^{2x}=\mathrm{e}^{2x\ln x}$ et $x\ln x \underset{x\to 0^+}{\longrightarrow} 0$ par croissances comparés, on a

$$\frac{x^{2x}-1}{x^2} \ = \ \frac{\mathrm{e}^{2x\ln x}-1}{x^2} \underset{0^+}{\sim} \frac{2x\ln x}{x^2} \ = \ \frac{2\ln x}{x} \underset{x\to 0^+}{\longrightarrow} -\infty, \quad \mathrm{donc} \quad \frac{x^{2x}-1}{x^2} \underset{x\to 0^+}{\longrightarrow} -\infty.$$