DM 7

à rendre pour le 26.11.

À chercher en autonomie. Le résultat d'une question peut éventuellement être admis en cas de recherche infructueuse, mais toutes les questions doivent être abordées.

Exercice 1. Soit la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. Calculer A^2 et A^3 .
- 2. Montrer par récurrence que pour tout $n \in \mathbb{N}$ il existe deux réels a_n , b_n tels que

$$A^n = \begin{pmatrix} 1 & a_n & b_n \\ 0 & 1 & a_n \\ 0 & 0 & 1 \end{pmatrix},$$

et préciser les relations de récurrence vérifiées par les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$.

3. En déduire l'expression explicite de a_n et b_n pour tout $n \in \mathbb{N}$, puis l'expression de A^n .

Exercice 2. On considère l'application

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto e^{x^2} + 1.$$

- 1. Montrer que f n'est ni injective, ni surjective.
- 2. Montrer que f réalise une bijection de \mathbb{R}_+ dans un intervalle J à préciser, ainsi qu'une bijection de \mathbb{R}_- dans J. On explicitera les applications réciproques de ces deux bijections.

Exercice 3. Soit
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $(x,y) \mapsto (x+y,xy).$

- 1. Montrer que l'application f n'est pas injective.
- 2. a. Soit $(a, b) \in \mathbb{R}^2$. Montrer que si $(a, b) \in f(\mathbb{R}^2)$, alors $a^2 4b \ge 0$.
 - b. En déduire que l'application f n'est pas surjective.