ECG1 2024-2025

DM 13

à rendre pour le 04.02.

À chercher en autonomie. Le résultat d'une question peut éventuellement être admis en cas de recherche infructueuse, mais toutes les questions doivent être abordées.

Exercice 1. Soient *n* un entier naturel supérieur ou égal à 2 et deux réels *a* et *b*. On considère la fonction

$$f_n: x \mapsto x^{2n} + ax + b$$

- 1. Justifier que la fonction f_n est dérivable sur $\mathbb R$ et montrer que l'équation $f_n'(x)=0$ admet une unique solution sur $\mathbb R$.
- 2. En déduire que l'équation $f_n(x) = 0$ admet au plus deux solutions sur \mathbb{R} .

Exercice 2. Montrer que pour tous réels $x, y \in \mathbb{R}_{-}$,

$$|e^x - e^y| \le |x - y|$$
.

Exercice 3. Soit $P \in \mathbb{R}[x]$ un polynôme dont le reste de la division euclidienne par $x^2 - 1$ est x + 1.

- 1. Déterminer le reste de la division de P par x + 1.
- 2. Déterminer le reste de la division de P par x 1.

Exercice 4. Déterminer l'ordre de multiplicité de la racine 1 du polynôme P, et en déduire la factorisation du polynôme

$$P(x) = x^4 - x^3 - 3x^2 + 5x - 2.$$

Exercice 5. Facultatif. Le but de cet exercice est de déterminer l'ensemble des polynômes P de $\mathbb{R}[x]$ vérifiant

$$\forall x \in \mathbb{R}, \quad P(x) + P(x+1) = 0. \tag{E}$$

On raisonne par analyse synthèse.

- 1. Analyse. Soit $P \in \mathbb{R}[x]$ vérifiant (E).
 - a. Montrer que pour tout réel x, P(x) = P(x + 2).
 - b. En déduire que P' est le polynôme nul, puis que P est le polynôme nul.
- 2. Synthèse. Conclure.