DM 14

Exercice 1. On considère l'ensemble

$$F = \{P \in \mathbb{R}[x], (x^2 + 1)P''(x) + 4P'(x) - 2P(x) = 0\}.$$

- 1. Question indépendante. Montrer que F est un sous-espace vectoriel de $\mathbb{R}[x]$.
- 2. Soit P un polynôme de la forme $P(x) = ax^2 + bx + c$, où a, b, $c \in \mathbb{R}$ tel que

$$(x^2+1)P''(x)+4P'(x)-2P(x) = 0. (E)$$

Exprimer P' et P", et en déduire des relations entre les réels a, b, c.

En déduire finalement l'ensemble des polynômes P de $\mathbb{R}_2[x]$ qui vérifient (E).

3. On suppose maintenant que P est un polynôme de degré $n \in \mathbb{N}^*$ qui appartient à F, c'est-à-dire que

$$P(x) = \sum_{k=0}^{n} a_k x^k$$
 avec $a_n \neq 0$, et $(x^2 + 1)P''(x) + 4P'(x) - 2P(x) = 0$.

- a. Montrer que le coefficient de $(x^2 + 1)P''(x) + 4P'(x) 2P(x)$ associé à x^n est $(n^2 n 2)a_n$.
- b. En déduire la seule valeur possible pour le degré n de P.
- 4. En déduire l'expression de tous les polynômes appartenant à F, puis une famille génératrice de F.
 - 1. Le polynôme nul appartient clairement à F.

- Si
$$P, Q \in F$$
 et $\lambda \in \mathbb{R}$, alors comme $(\lambda P + Q)' = \lambda P' + Q'$ et $(\lambda P + Q)'' = \lambda P'' + Q''$, on a

$$(x^{2}+1)(\lambda P+Q)''(x)+4(\lambda P+Q)'(x)-2(\lambda P+Q)(x) = \lambda \underbrace{((x^{2}+1)P''(x)+4P'(x)-2P(x))}_{=0} + \underbrace{(x^{2}+1)Q''(x)+4Q'(x)-2Q(x)}_{=0} = 0,$$

donc $\lambda P + Q \in F$.

Par conséquent, F est bien un sous-espace vectoriel de $\mathbb{R}[x]$.

2. Si $P \in \mathbb{R}_2[x]$ alors P s'écrit $P(x) = ax^2 + bx + c$, et P'(x) = 2ax + b, P''(x) = 2a. Par conséquent, $P \in F$ si et seulement si

$$2a(x^2+1)+4(2ax+b)-2(ax^2+bx+c) = (8a-2b)x+2a+4b-2c = 0_{\mathbb{R}[x]}$$

En identifiant les coefficients, ceci équivaut à $\begin{cases} 8a - 2b = 0 \\ 2a + 4b - 2c = 0 \end{cases}$, ou encore $\begin{cases} b = 4a \\ c = 9a \end{cases}$

Finalement, les polynômes de $\mathbb{R}_2[x]$ sui appartiennent à F sont exactement les polynômes de la forme $a(x^2+4x+9)$, où $a\in\mathbb{R}$.

- 3. a. On a $P'(x) = \sum_{k=1}^{n} k a_k x^{k-1}$ et $P''(x) = \sum_{k=2}^{n} k(k-1) a_k x^{k-2}$, donc
 - le terme dominant de $(x^2 + 1)P''(x)$ est $n(n-1)a_n x^n$,
 - le terme dominant de 4P'(x) est $4na_n x^{n-1}$,
 - le terme dominant de 2P(x) est $2a_n x^n$.

Par conséquent, le terme dominant de $(x^2 + 1)P''(x) + 4P'(x) - 2P(x)$ est

$$n(n-1)a_n + 2a_n = (n^2 - n + 2)a_n$$
.

b. Comme $(x^2 + 1)P''(x) + 4P'(x) - 2P(x) = 0_{\mathbb{R}[x]}$, tous les coefficients de ce polynôme sont nuls. En particulier,

$$(n^2 - n - 2) a_n = 0$$
, $n^2 - n - 2 = 0$ du fait que $a_n \neq 0$.

Comme $n^2 - n - 2 = (n+1)(n-2)$, on a nécessairement n = 2. En d'autres termes, le polynôme P est de degré 2.

4. D'après la question 2., on connaît tous les polynômes de degré 2 qui sont dans F. Comme on sait que tous les polynômes non constants de F sont de degré 2, on a finalement

$$F = \{a(x^2 + 4x + 9), a \in \mathbb{R}\}.$$

Autrement dit, $F = \text{Vect } x^2 + 4x + 9$, et la famille $(x^2 + 4x + 9)$ est génératrice de F.

Exercice 2. On effectue une succession infinie de lancers indépendants d'une pièce équilibrée.

On va s'intéresser aux successions de lancers amenant un même résultat, qu'on appellera *séries*. On va considérer le nombre de séries lors des *n* premiers lancers, comme précisé ci-dessous.

- On dit que la première série est de longueur k < n si les k premiers lancers ont amené le même côté de la pièce et le (k + 1)^{ème} l'autre côté. Elle est de longueur n si les n premiers lancers ont amené le même côté de la pièce.
- La deuxième série commence au lancer suivant la fin de la première série si elle s'achève avant le lancer n-1, et ainsi de suite. La dernière série se termine nécessairement au $n^{\text{ème}}$ lancer.

On suppose que l'expérience peut être modélisée par un espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$. On note Y_n la variable aléatoire correspondant au nombre de séries lors des n premiers lancers.

Par exemple, si les lancers successifs donnent : FFPPPFFPPP... (où F désigne Face et P Pile), on a :

$$Y_1 = Y_2 = 1$$
, $Y_3 = \dots = Y_6 = 2$, $Y_7 = Y_8 = 3$, $Y_9 = \dots = Y_{11} = 4$.

En effet, après 1 lancer (F), il y a une seule série (Face), donc $[Y_1 = 1]$ est réalisé. Après 2 lancers (FF), il n'y a toujours qu'une série, donc $[Y_2 = 1]$ est réalisé. Après 3 lancers (FFP), il y a deux séries donc $[Y_3 = 2]$ est réalisé, etc.

Pour $i \in \mathbb{N}^*$, on note P_i l'événement "le *i*-ème lancer amène Pile" et F_i l'événement contraire.

- 1. Déterminer les lois de Y_1 (nombre de séries après 1 lancer), Y_2 (nombre de séries après 2 lancers) et Y_3 (nombre de séries après 3 lancers), et donner leurs espérances.
- 2. Dans le cas général où $n \in \mathbb{N}^*$, déterminer $Y_n(\Omega)$ (ensemble des valeurs prises par Y_n), puis calculer les valeurs de $\mathbb{P}(Y_n = 1)$ et $\mathbb{P}(Y_n = n)$.
- 3. Simulation informatique. Pour $k \in \mathbb{N}^*$ on note X_k la variable aléatoire qui vaut 1 lorsque le $k^{\text{ème}}$ lancer amène Pile, et 0 sinon.

Compléter la fonction SimuleY(n) suivante, qui prend en entrée un entier n, simule X_1, \ldots, X_n (dont les valeurs seront stockées dans le tableau X), et détermine les valeurs de Y_1, \ldots, Y_n (qui seront stockées dans le tableau Y).

On rappelle que rd.randint(0,2) simule une variable aléatoire de loi uniforme sur $\{0,1\}$.

```
import numpy as np
import numpy.random as rd
def SimuleY(n):
```

```
X=np.zeros(n); Y=np.zeros(n)
X[0]=...
Y[0]=...
for i in range(1,n):
    X[i]=...
    if ...:
        Y[i]=...
else:
        Y[i]=...
return(Y)
```

Pour $n \in \mathbb{N}^*$, on introduit la fonction génératrice de Y_n : pour $t \in [0,1]$, on pose

$$G_n(t) = \sum_{k=1}^n t^k \mathbb{P}(Y_n = k).$$

- 4. Justifier que tout $t \in [0, 1]$, on a $\mathbb{E}(t^{Y_n}) = G_n(t)$.
- 5. Justifier que G_n est dérivable sur [0,1], et calculer sa dérivée. Que représente $G'_n(1)$?
- 6. Montrer que pour tout $n \ge 2$ et tout $k \in \{1, ..., n\}$ on a

$$\mathbb{P}\left([Y_n = k] \cap P_n \right) \; = \; \frac{1}{2} \, \mathbb{P}\left([Y_{n-1} = k] \cap P_{n-1} \right) + \frac{1}{2} \, \mathbb{P}\left([Y_{n-1} = k-1] \cap F_{n-1} \right).$$

On admet que l'on obtiendrait de même :

$$\mathbb{P}([Y_n = k] \cap F_n) = \frac{1}{2} \mathbb{P}([Y_{n-1} = k] \cap F_{n-1}) + \frac{1}{2} \mathbb{P}([Y_{n-1} = k-1] \cap P_{n-1}).$$

Montrer alors que

$$\mathbb{P}(Y_n = k) = \frac{1}{2}\mathbb{P}(Y_{n-1} = k) + \frac{1}{2}\mathbb{P}(Y_{n-1} = k - 1).$$

7. Soit $n \ge 2$. Montrer que pour tout $t \in [0, 1]$,

$$G_n(t) = \frac{1+t}{2} G_{n-1}(t).$$

Calculer $G_1(t)$ et en déduire que

$$G_n(t) = \left(\frac{1+t}{2}\right)^{n-1}t.$$

- 8. Déduire de ce qui précède le nombre moyen de séries dans les n premiers lancers, donné par $\mathbb{E}(Y_n)$.
 - 1. On a $Y_1(\Omega) = \{1\}$. La variable aléatoire Y_1 est donc une variable aléatoire certaine égale à 1. On a donc $\mathbb{E}(Y_1) = 1$.
 - On a $Y_2(\Omega) = \{1, 2\}$. On a, par indépendance,

$$\begin{array}{lll} \mathbb{P}(Y_2=1) & = & \mathbb{P}(P_1 \cap P_2 \, \sqcup \, F_1 \cap F_2) = \mathbb{P}(P_1 \cap P_2) + \mathbb{P}(F_1 \cap F_2) \, = \, \mathbb{P}(P_1)\mathbb{P}(P_2) + \mathbb{P}(F_1)\mathbb{P}(F_2) \\ & = & \frac{1}{4} + \frac{1}{4} \, = \, \frac{1}{2}. \end{array}$$

Par conséquent, on a $\mathbb{P}(Y_2 = 2) = 1 - \mathbb{P}(Y_2 = 1) = \frac{1}{2}$.

On a ainsi $\mathbb{E}(Y_2) = 1 \times \frac{1}{2} + 2 \times = \frac{3}{2}$.

– On a $Y_3 = [1, 3]$. Par indépendance comme ci-dessus, on a

$$\begin{split} \mathbb{P}(Y_3 = 1) &= \mathbb{P}(P_1 \cap P_2 \cap P_3) + \mathbb{P}(F_1 \cap F_2 \cap F_3) = \frac{1}{2^3} + \frac{1}{2^3} = \frac{1}{4}. \\ \mathbb{P}(Y_3 = 3) &= \mathbb{P}(P_1 \cap F_2 \cap P_3) + \mathbb{P}(F_1 \cap P_2 \cap F_3) = \frac{1}{2^3} + \frac{1}{2^3} = \frac{1}{4}. \\ \mathbb{P}(Y_3 = 2) &= 1 - \mathbb{P}(Y_3 = 1) - \mathbb{P}(Y_3 = 3) = \frac{1}{5}. \end{split}$$

Ainsi, on a
$$\mathbb{E}(Y_3) = 1 \times \frac{1}{4} + 2 \times \frac{1}{2} + 3 \times \frac{1}{4} = 2$$
.

2. On remarque qu'il peut y avoir une seule série (si les n lancers donnent le même résultat). Par ailleurs, pour tout $k \in [\![2,n]\!]$, il peut y avoir exactement k séries, si les k premiers lancers donnent un résultat différent du précédent, puis tous les résultats sont les mêmes que le kième.

Finalement, $Y_n(\Omega) = [1, n]$. Par ailleurs, toujours par indépendance,

$$\begin{split} \mathbb{P}(Y_n = 1) &= \mathbb{P}(P_1 \cap \ldots \cap P_n) + \mathbb{P}(F_1 \cap \ldots \cap F_n) = \frac{1}{2^n} + \frac{1}{2^n} = \frac{1}{2^{n-1}}, \\ \mathbb{P}(Y_n = n) &= \mathbb{P}(P_1 \cap F_2 \cap P_3 \cap \ldots) + \mathbb{P}(F_1 \cap P_2 \cap F_3 \cap \ldots) = \frac{1}{2^n} + \frac{1}{2^n} = \frac{1}{2^{n-1}}. \end{split}$$

Il suffit en effet de remarquer qu'à chaque lancer, on ajoute un au nombre de séries si et seulement on obtient un résultat différent du précédent.

- 4. Il s'agit du théorème de transfert : comme on sait que $Y_n(\Omega) = [1, n]$, on a pour tout $t \in [0, 1]$, $\mathbb{E}\left(t^{Y_n}\right) = \sum_{k=1}^n t^k \mathbb{P}(Y_n = k)$.
- 5. La fonction G_n est dérivable comme fonction polynomiale, et pour tout $t \in [0,1]$, on a

$$G'_n(t) = \sum_{k=1}^n k t^{k-1} \mathbb{P}(Y_n = k).$$

En particulier, on a $G'_n(1) = \sum_{k=1}^n k \mathbb{P}(Y_n = k) = \mathbb{E}(Y_n)$.

6. Comme P_{n-1} et F_{n-1} forment un système complet d'événements, la formule des probabilités totales donne

$$\mathbb{P}([Y_n = k] \cap P_n) = \mathbb{P}([Y_n = k] \cap P_n \cap P_{n-1}) + \mathbb{P}([Y_n = k] \cap P_n \cap F_{n-1}).$$

On remarque par ailleurs que $[Y_n = k] \cap P_n \cap P_{n-1} = [Y_{n-1} = k] \cap P_{n-1} \cap P_n$,

$$[Y_n = k] \cap P_n \cap F_{n-1} = [Y_{n-1} = k-1] \cap F_{n-1} \cap P_n.$$

Par indépendance, on a $\mathbb{P}([Y_{n-1}=k]\cap P_{n-1}\cap P_n)=\mathbb{P}([Y_{n-1}=k]\cap P_{n-1})\mathbb{P}(P_n)$,

$$\mathbb{P}([Y_{n-1} = k-1] \cap F_{n-1} \cap P_n) = \mathbb{P}([Y_{n-1} = k-1] \cap F_{n-1})\mathbb{P}(P_n).$$

Comme $\mathbb{P}(P_n) = \frac{1}{2}$, on obtient

$$\mathbb{P}([Y_n = k] \cap P_n) = \frac{1}{2} \mathbb{P}([Y_{n-1} = k] \cap P_{n-1}) + \frac{1}{2} \mathbb{P}([Y_{n-1} = k-1] \cap F_{n-1}).$$

Comme P_n et F_n forment un système complet d'événements, on a

$$\begin{split} \mathbb{P}(Y_{n} = k) &= \mathbb{P}([Y_{n} = k] \cap P_{n}) + \mathbb{P}([Y_{n} = k] \cap F_{n}) \\ &= \frac{1}{2} \mathbb{P}([Y_{n-1} = k] \cap P_{n-1}) + \frac{1}{2} \mathbb{P}([Y_{n-1} = k - 1] \cap F_{n-1}) \\ &+ \frac{1}{2} \mathbb{P}([Y_{n-1} = k] \cap F_{n-1}) + \frac{1}{2} \mathbb{P}([Y_{n-1} = k - 1] \cap P_{n-1}) \\ &= \frac{1}{2} \mathbb{P}(Y_{n-1} = k) + \frac{1}{2} \mathbb{P}(Y_{n-1} = k - 1), \end{split}$$

car
$$\mathbb{P}([Y_{n-1} = k] \cap P_{n-1}) + \mathbb{P}([Y_{n-1} = k] \cap F_{n-1}) = \mathbb{P}(Y_{n-1} = k),$$

 $\mathbb{P}([Y_{n-1} = k-1] \cap P_{n-1}) + \mathbb{P}([Y_{n-1} = k-1] \cap F_{n-1}) = \mathbb{P}(Y_{n-1} = k-1).$

7. Soit $t \in [0, 1]$. D'après la question précédente, on a pour tout $n \in \mathbb{N}^*$,

$$G_{n}(t) = \sum_{k=1}^{n} t^{k} \left(\frac{1}{2} \mathbb{P}(Y_{n-1} = k) + \frac{1}{2} \mathbb{P}(Y_{n-1} = k - 1) \right)$$

$$= \frac{1}{2} \sum_{k=1}^{n} t^{k} \mathbb{P}(Y_{n-1} = k) + \frac{1}{2} \sum_{k=1}^{n} t^{k} \mathbb{P}(Y_{n-1} = k - 1)$$

$$\stackrel{=}{=} \frac{1}{2} \sum_{k=1}^{n-1} t^{k} \mathbb{P}(Y_{n-1} = k) + \frac{1}{2} \sum_{i=0}^{n-1} t^{i+1} \mathbb{P}(Y_{n-1} = i)$$

$$= \frac{1}{2} G_{n-1}(t) + \frac{t}{2} \sum_{i=1}^{n-1} t^{i} \mathbb{P}(Y_{n-1} = i)$$

$$= \frac{1}{2} G_{n-1}(t) + \frac{t}{2} G_{n-1}(t) = \frac{1+t}{2} G_{n-1}(t).$$

On a
$$G_1(t) = \sum_{k=1}^1 t^k \mathbb{P}(Y_1 = k) = \mathbb{P}(Y_1 = 1) t = t.$$

D'après ce qui précède, la suite $(G_n(t))_{n\in\mathbb{N}^*}$ est géométrique de raison $\frac{1+t}{2}$, donc on sait que pour tout $n\in\mathbb{N}^*$, on a

$$G_n(t) = \left(\frac{1+t}{2}\right)^{n-1}G_1(t) = \left(\frac{1+t}{2}\right)^{n-1}t.$$

8. Nous avons vu que $\mathbb{E}(Y_n) = G_n'(1)$, or pour tout $t \in [0, 1]$, on a

$$G'_n(t) = \frac{n-1}{2} \left(\frac{1+t}{2}\right)^{n-2} t + \left(\frac{1+t}{2}\right)^{n-1}.$$

Ainsi, on a
$$\mathbb{E}(Y_n) = G_n'(1) = \frac{n-1}{2} + 1 = \frac{n+1}{2}$$
.