ECG1 2024-2025

DM 16

Exercice 1. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_1^2 x (\ln x)^n dx$.

- 1. Calculer I_0 .
- 2. Pour tout entier naturel n, déterminer une relation entre I_n et I_{n+1} .
- 3. En déduire les valeurs de I_1 et de I_2 .
 - 1. On a $I_0 = \int_1^2 x \, dx = \left[\frac{x^2}{2}\right]_1^2 = \frac{3}{2}$.
 - 2. Soit $n \in \mathbb{N}$. Comme les fonctions $u: x \mapsto \frac{x^2}{2}$ et $v: x \mapsto (\ln x)^{n+1}$ sont de classe \mathscr{C}^1 sur [1,2], une intégration par parties donne

$$I_{n+1} = \left[\frac{x^2}{2} (\ln x)^{n+1}\right]_1^2 - \int_1^2 \frac{x^2}{2} (n+1) \frac{1}{x} (\ln x)^n dx = 2(\ln 2)^{n+1} - \frac{n+1}{2} I_n.$$

3. On en déduit que $I_1 = 2 \ln 2 - \frac{3}{4}$, et $I_2 = 2(\ln 2)^2 - 2 \ln 2 + \frac{3}{4}$.

Exercice 2. Calculer $I = \int_0^1 \frac{\mathrm{e}^{3x}}{\mathrm{e}^x + 1} \, \mathrm{d}x$ en ayant recours au changement de variable $u = \mathrm{e}^x + 1$.

Comme $\varphi: x \mapsto e^x + 1$ est de classe \mathscr{C}^1 et strictement croissante sur [0,1], le théorème du changement de variable donne $(du = e^x dx, et e^x = u - 1)$:

$$I = \int_0^1 \frac{(e^x)^2}{e^x + 1} e^x dx \stackrel{u = e^x + 1}{=} \int_2^{e + 1} \frac{(u - 1)^2}{u} du.$$

Ainsi on a

$$I = \int_{2}^{e+1} \frac{u^2 - 2u + 1}{u} du = \int_{2}^{e+1} \left(u - 2 + \frac{1}{u} \right) dx = \left[\frac{u^2}{2} - 2u + \ln(u) \right]_{2}^{e+1} = \frac{e^2}{2} - e + \frac{1}{2} + \ln \frac{1 + e}{2}.$$

Exercice 3. On considère la suite (I_n) d'intégrales définies par :

$$\forall n \in \mathbb{N}, \quad I_n = \int_0^1 (1-x)^n \mathrm{e}^{3x} \, \mathrm{d}x.$$

- 1. Nature de (I_n) .
 - a. Montrer que la suite (I_n) est une suite positive.
 - b. Étudier les variations de (I_n) .
 - c. La suite (I_n) est-elle convergente?
- 2. Limite de (I_n) .

ECG1 2024-2025

- a. Montrer que pour tout $n \in \mathbb{N}$, $\frac{1}{n+1} \leqslant I_n \leqslant \frac{e^3}{n+1}$.
- b. En déduire la limite de (I_n) .

1. a. Pour tout $x \in [0, 1]$,

$$\left\{ \begin{array}{l} 1-x\geqslant 0 \\ \mathrm{e}^{3x}>0 \end{array} \right. \ \mathrm{donc} \ (1-x)^n \mathrm{e}^{3x}\geqslant 0 \ ,$$

donc par croissance de l'intégrale, on a pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 (1-x)^n \mathrm{e}^{3x} \, \mathrm{d}x \geqslant 0$.

b. Soit $n \in \mathbb{N}$. Pour tout $x \in [0,1]$, on a $1-x \in [0,1]$, donc $(1-x)^n \geqslant (1-x)^{n+1}$. Ainsi, par croissance de l'intégrale, on a

$$I_{n+1} = \int_0^1 (1-x)^{n+1} e^{3x} dx \leqslant \int_0^1 (1-x)^n e^{3x} dx = I_n.$$

Par conséquent, la suite (I_n) est décroissante.

c. (I_n) est décroissante et minorée par 0 donc elle converge en vertu du théorème de convergence monotone.

2. a. Comme la fonction exponentielle est croisante, on a $1 = e^0 \le e^{3x} \le e^3$ pour tout $x \in [0,1]$. Par conséquent, pour tout $n \in \mathbb{N}$, on a $(1-x)^n \le (1-x)^n e^{3x} \le (1-x)^n e^3$, du fait que $(1-x)^n \ge 0$ si $x \in [0,1]$. Par croissance de l'intégrale, on a donc pour tout $n \in \mathbb{N}$,

$$\int_0^1 (1-x)^n \, \mathrm{d}x \ \leqslant \ \int_0^1 \mathrm{e}^{3x} (1-x)^n \, \mathrm{d}x \ \leqslant \ \mathrm{e}^3 \int_0^1 (1-x)^n \, \mathrm{d}x.$$

Par ailleurs:

$$\int_0^1 (1-x)^n dx = \left[-\frac{(1-x)^{n+1}}{n+1} \right]_0^1 = 0 + \frac{1}{n+1} = \frac{1}{n+1}.$$

Ainsi, pour tout $n \in \mathbb{N}$, on a donc bien $\frac{1}{n+1} \leqslant I_n \leqslant \frac{\mathrm{e}^3}{n+1}$.

b. Comme on a $\frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$ et $\frac{e^3}{n+1} \xrightarrow[n \to +\infty]{} 0$, on obtient que la suite (I_n) converge vers 0 par encadrement, d'après la question précédente.