15. Intégration sur un segment

Exercice 1. Déterminer une primitive de f dans chacun des cas suivants, sur un intervalle à déterminer.

1.
$$f: x \mapsto (x-1)\sqrt{x}$$
.

3.
$$f: x \mapsto \frac{x+3}{x+1}$$
.
4. $f: x \mapsto \frac{x^2+x}{x^2+1}$.

2.
$$f: x \mapsto (x+3)(x+2)$$
.

4.
$$f: x \mapsto \frac{x^2 + x}{x^2 + 1}$$

Exercice 2. Calculer les intégrales suivantes.

1.
$$\int_{1}^{e} \left(\frac{1}{x^2} + \frac{1}{x} \right) dx$$
.

3.
$$\int_0^4 |x-2| \, \mathrm{d}x$$
.

2.
$$\int_0^1 2x^2 e^{-\frac{x^3}{2}} dx$$
.

4.
$$\int_0^2 x^2 \lfloor x \rfloor \, \mathrm{d}x.$$

Exercice 3. Calculer les intégrales suivantes par intégration par parties.

1.
$$\int_0^1 x e^x dx.$$

$$2. \int_0^{\pi} \cos(t) e^t dt$$

1.
$$\int_0^1 x e^x dx$$
. 2. $\int_0^\pi \cos(t) e^t dt$. 3. $\int_0^1 \ln(1+t^2) dt$.

Exercice 4. Calculer les intégrales suivantes par changement de variables.

1.
$$\int_0^1 \frac{x^2}{1+x^6} \, \mathrm{d}x$$
, $(u=x^3)$

1.
$$\int_0^1 \frac{x^2}{1+x^6} dx$$
, $(u=x^3)$ 4. $\int_1^2 \frac{x-1}{\sqrt{x+1}} dx$, $(u=\sqrt{x+1})$

2.
$$\int_{1}^{e} \frac{1}{t\sqrt{1+\ln t}} dt, \quad (x = \ln t)$$

2.
$$\int_{1}^{e} \frac{1}{t\sqrt{1+\ln t}} dt$$
, $(x = \ln t)$ 5. $\int_{0}^{1} \frac{e^{3x}}{e^{x}+1} dx$, $(u = e^{x}+1)$

3.
$$\int_0^1 \frac{t^3}{(1+t)^3} dt$$
, (affine)

3.
$$\int_0^1 \frac{t^3}{(1+t)^3} dt$$
, (affine) 6. $\int_0^1 \frac{t^2 - 3t + 1}{\sqrt{2t+3}} dt$, (affine)

Exercice 5. Calculer les intégrales suivantes.

1.
$$\int_{1}^{e} (\ln t)^2 dt$$
.

3.
$$\int_0^1 \arctan t \, \mathrm{d}t$$

1.
$$\int_{1}^{e} (\ln t)^{2} dt$$
.
2. $\int_{0}^{\pi/3} \frac{\cos t}{1 + \sin t} dt$.
3. $\int_{0}^{1} \arctan t dt$.
4. $\int_{1}^{2} x^{2} \ln(x) dx$.
5. $\int_{0}^{1} (x - 1)e^{-x} dx$.

2.
$$\int_0^{\pi/3} \frac{\cos t}{1 + \sin t} dt$$

4.
$$\int_{1}^{2} x^{2} \ln(x) dx$$

Exercice 6.

1. Trouver $a, b, c \in \mathbb{R}$ tels que pour tout $t \in \mathbb{R} \setminus \{-1, 1, 0\}$

$$\frac{1}{t(t^2-1)} = \frac{a}{t} + \frac{b}{t+1} + \frac{c}{t-1}.$$

2. En déduire $\int_{0}^{3} \frac{1}{t(t^2-1)} dt$.

Exercice 7.

1

1. Montrer que $\int_{0}^{\pi/3} (\sin t)^n dt \xrightarrow[n \to +\infty]{} 0$.

2. Montrer que $\int_{0}^{\pi} e^{-nt} \cos\left(\frac{t}{n}\right) dt \underset{n \to +\infty}{\longrightarrow} 0$.

Exercice 8. Soient I et J des intervalles de \mathbb{R} .

1. On considère φ et ψ , deux fonctions de I dans J dérivables sur I, et $f: J \longrightarrow \mathbb{R}$ continue sur J. Pour tout $x \in I$, on pose

$$u(x) = \int_{\varphi(x)}^{\psi(x)} f(t) dt.$$

Montrer que u est dérivable sur I et calculer sa dérivée.

2. Soit v la fonction définie par

$$v(x) = \int_{\frac{1}{x^2}}^{x^2} \frac{\ln t}{1 + t^2} \, \mathrm{d}t.$$

a. Montrer que la fonction v est bien définie sur \mathbb{R}^* , et paire.

b. Montrer que v est constante sur \mathbb{R}^* , et préciser la valeur de la contante.

3. Soit g la fonction définie sur \mathbb{R}^* par $g(x) = \int_{-\infty}^{2x} \frac{1}{\ln(1+t^2)} dt$.

ECG1 – Lycée Gabriel Touchard 2024-2025

- a. Montrer que g est bien définie sur \mathbb{R}^* , et étudier sa parité.
- b. Montrer que g est de classe \mathscr{C}^1 sur \mathbb{R}^* et calculer g'(x) pour tout $x \in \mathbb{R}^*$.

Exercice 9. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_1^2 x (\ln x)^n dx$.

- 1. Calculer I_0 .
- 2. Pour tout entier naturel n, déterminer une relation entre I_n et I_{n+1} .
- 3. En déduire les valeurs de I_1 et de I_2 .

Exercice 10. Déterminer les limites suivantes.

1.
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \sin\left(\frac{k\pi}{n}\right)$$
. 2. $\lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{k}{n^2 + k^2}$.

3. Pour chacune de ces sommes, écrire un programme Python pour vérifier les résultats obtenus.

Exercice 11. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$.

- 1. Justifier l'existence de l'intégrale $I_n = \int_0^1 \frac{t^n}{1+t} dt$ pour tout $n \in \mathbb{N}$. Montrer que la suite $(I_n)_{n \in \mathbb{N}}$ converge vers 0.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$

$$S_n = \int_0^1 \frac{1 - (-t)^{n+1}}{1 + t} \, \mathrm{d}t$$

3. En déduire la limite de la suite $(S_n)_{n\in\mathbb{N}^*}$

Exercice 12. Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^1 \frac{x^n}{\sqrt{x^2 + 1}} dx$.

- 1. Montrer que la suite (u_n) est bien définie.
- 2. Soit f la fonction définie sur [0,1] par

$$f: x \mapsto \ln\left(x + \sqrt{x^2 + 1}\right)$$
.

Montrer que f est dérivable sur [0,1] et calculer sa dérivée.

- 3. En déduire la valeur de u_0 .
- 4. Calculer u_1 .
- 5. Démontrer que (u_n) est décroissante et en déduire sa nature.
- 6. Démontrer que pour tout $n \in \mathbb{N}$, $u_n \leq \frac{1}{n+1}$, et en déduire la limite de la suite (u_n) .

Exercice 13. Le but de cet exercice est de déterminer la limite en $+\infty$ de la fonction f définie par

$$f(x) = \int_x^{2x} \frac{1}{t + \sqrt{t}} dt$$
, pour tout $x \in [1, +\infty[$.

- 1. Pour tout réel $x \in [1, +\infty[$, calculer $\int_x^{2\pi} \frac{1}{t} dt$.
- 2. Montrer que pour tout $t \in [1, +\infty[$, $0 \le \frac{1}{t} \frac{1}{t + \sqrt{t}} \le \frac{1}{t^{3/2}}$.
- 3. En déduire la limite désirée.
- 4. Retrouver ce résultat en calculant l'intégrale à l'aide d'un changement de variable.

Exercice 14. On considère la suite $(I_n)_{n\geq 0}$ définie par : $\forall n\in\mathbb{N}$,

$$I_n = \int_0^{\frac{\pi}{2}} (\cos t)^n \, \mathrm{d}t.$$

- 1. Montrer que I_n est bien défini pour tout $n \in \mathbb{N}$.
- 2. Calculer I_0 , I_1 et I_2 .

 Indication: Pour calculer I_2 , on pourra exprimer $\cos^2(t)$ en fonction de $\cos(2t)$.

The control of the co

- 3. a. Etudier la monotonie de la suite $(I_n)_{n\in\mathbb{N}}$.
 - b. En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ converge.
 - c. En ayant recours à l'intégration par parties, montrer que pour tout $n \in \mathbb{N}$,

$$I_{n+2} = (n+1)(I_n - I_{n+2})$$

Indication: on pourra remarquer que $(\cos t)^{n+2} = (\cos t)^{n+1} \times \cos t$ pour tout réel t.

ECG1 – Lycée Gabriel Touchard 2024-2025

d. En déduire que :

$$\forall n \in \mathbb{N}, \ I_{2n} = \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2} \quad \text{et} \quad I_{2n+1} = \frac{(2^n n!)^2}{(2n+1)!}.$$

Exercice 15. Pour tout $x \in \mathbb{R}$, on pose $f(x) = \int_{x}^{2x} \frac{1}{\sqrt{t^2 + 1}} dt$.

- 1. Justifier que f est définie sur \mathbb{R} .
- 2. Montrer que f est impaire.
- 3. a. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .
 - b. Déterminer la dérivée de f et en déduire que f est strictement croissante sur \mathbb{R} .
- 4. a. Par encadrement, montrer que, pour tout x > 0,

$$\ln(2x+1) - \ln(x+1) \leqslant f(x) \leqslant \ln 2.$$

- b. En déduire la limite de f en $+\infty$.
- c. Résoudre l'équation f(x) = 0.
- 5. a. Montrer que pour tout réel x, on a $x + \sqrt{x^2 + 1} > 0$.
 - b. Déterminer la dérivée de la fonction $h: x \mapsto \ln (x + \sqrt{x^2 + 1})$.
 - c. En déduire l'expression explicite de f.
- 6. a. Etablir que, pour tout réel x strictement positif, on a

$$x - f(x) = \int_{x}^{2x} \frac{t^2}{\sqrt{t^2 + 1} (1 + \sqrt{t^2 + 1})} dt.$$

b. En déduire que pour tout $x \in \mathbb{R}_+^*$,

$$0 \leqslant x - f(x) \leqslant \frac{7}{6}x^3.$$

- c. Conclure que $\frac{f(x)}{x} \xrightarrow[x \to 0^+]{} 1$.
- d. Montrer que l'on a aussi $\frac{f(x)}{x} \xrightarrow[x \to 0^{-}]{} 1$.

Exercice 16. Soit f la fonction définie sur \mathbb{R}_{+}^{\star} par $f(x) = x - \ln(x)$.

1. Dresser le tableau de variations de f en précisant ses limites en 0 et $+\infty$.

On note Φ la fonction donnée par : $\Phi(x) = \int_{x}^{2x} \frac{1}{f(t)} dt$.

2. Montrer que Φ est bien définie et dérivable sur $\mathbb{R}^{\star}_{\perp}$, et que l'on a :

$$\forall x \in \mathbb{R}_+^*, \quad \Phi'(x) = \frac{\ln(2) - \ln(x)}{(x - \ln(x))(2x - \ln(2x))}.$$

- 3. En déduire les variations de Φ sur \mathbb{R}_{+}^{\star} .
- 4. Montrer: $\forall x \in \mathbb{R}_{+}^{\star}, 0 \leqslant \Phi(x) \leqslant x$.
- 5. a. Montrer que Φ est prolongeable par continuité en 0. On note encore Φ la fonction ainsi prolongée. Préciser alors $\Phi(0)$.
 - b. Montrer : $\lim_{x\to 0} \Phi'(x) = 0$. On admet que la fonction Φ est alors dérivable en 0 et que $\Phi'(0) = 0$.
- 6. On donne $\Phi(2) \approx 1,1$ et on admet que $\lim_{x \to +\infty} \Phi(x) = \ln(2) \approx 0,7$. Tracer l'allure de la courbe représentative de Φ ainsi que la tangente à la courbe au point d'abscisse 0.