ECG1 – Lycée Gabriel Touchard 2024-2025

22. Représentation matricielle des applications linéaires

Exercice 1. Soient E un espace vectoriel de base $\mathscr{B}=(e_1,e_2,e_3)$ et φ l'endomorphisme de E défini par

$$\varphi(e_1) = -3e_1 + e_2 + e_3, \quad \varphi(e_2) = -2e_1 + e_2 + 4e_3 \quad \text{et} \quad \varphi(e_3) = 4e_1 - e_2 + 2e_3.$$

- 1. Déterminer la matrice A de φ dans la base \mathscr{B} .
- 2. Déterminer $\operatorname{Ker} \varphi$.

Exercice 2. Soient E un espace vectoriel, $\mathscr{B} = (e_1, e_2, e_3)$ une base de E, et f l'endomorphisme de E dont la matrice dans la base \mathscr{B} est

$$M = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right).$$

- 1. Expliciter $f(e_1)$, $f(e_2)$ et $f(e_3)$.
- 2. Déterminer $\operatorname{Im} f$: on en donnera une base et sa dimension.
- 3. Justifier que f est un isomorphisme, et déterminer la matrice de $\operatorname{Mat}_{\mathscr{B}}(f^{-1})$.

Exercice 3. Dans l'espace vectoriel \mathbb{R}^3 muni de sa base canonique $\mathscr{B} = (e_1, e_2, e_3)$, on considère les trois vecteurs : $\varepsilon_1 = (1, 1, 1)$, $\varepsilon_2 = (1, 1, -1)$, $\varepsilon_3 = (1, -1, 1)$.

- 1. Montrer que $\mathscr{C} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 .
- 2. On considère φ l'endomorphisme de \mathbb{R}^3 défini par les relations : $\varphi(e_1) = \varepsilon_1$, $\varphi(e_2) = \varepsilon_2$, $\varphi(e_3) = \varepsilon_3$.
 - a. Expliciter la matrice M de φ dans la base canonique \mathscr{B} .
 - b. Montrer que φ est bijective.
- 3. Déterminer la matrice de $\varphi^2 = \varphi \circ \varphi$ dans la base \mathscr{B} . Montrer que cette matrice est combinaison linéaire de M et I et en déduire M^{-1} .
- 4. Donner une relation entre φ , φ^2 et $\mathrm{Id}_{\mathbb{R}^3}$.

Exercice 4. Déterminer rg f, où $f \in \mathcal{L}(\mathbb{R}^3)$ a pour matrice dans la base canonique de \mathbb{R}^3

$$A = \begin{pmatrix} 2 & 2 & 0 \\ -1 & 0 & 1 \\ 0 & -2 & -2 \end{pmatrix}.$$

Exercice 5. On note $\mathscr{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et on considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans \mathscr{B} est :

$$A = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

- 1. Déterminer $\operatorname{Ker} f$ puis $\operatorname{Im} f$.
- 2. Montrer que f est un projecteur dont on précisera les éléments caractéristiques (c'est-à-dire qu'on précisera sur quel espace, et parallèlement auquel).

Exercice 6. Soit E un espace vectoriel de dimension n. On considère $f \in \mathcal{L}(E)$ tel que $f^3 = 0$ et $f^2 \neq 0$.

- 1. Factoriser $x^3 1$.
- 2. En déduire que $\mathrm{Id}_E f$ est bijectif et expliciter $(\mathrm{Id}_E f)^{-1}$ en fonction de f.

Exercice 7.

On considère l'espace vectoriel \mathbb{R}^3 muni de sa base canonique $\mathscr{B}=(e_1,e_2,e_3)$. Soit $\mathscr{C}=(u_1,u_2,u_3)$ et $\mathscr{D}=(v_1,v_2,v_3)$, avec

$$u_1 = (1, -2, 2),$$
 $u_2 = (0, 3, -2)$ $u_3 = (0, 4, -3),$
 $v_1 = (0, 1, -1)$ $v_2 = (1, -1, 1)$ $v_3 = (1, 1, 0).$

Soit enfin f l'endomorphisme de \mathbb{R}^3 défini par $f(e_1)=u_1,\, f(e_2)=u_2,\, f(e_3)=u_3.$

- 1. Expliciter la matrice A de f dans la base \mathscr{B} . Montrer que f est bijective.
- 2. Montrer que \mathscr{D} est une base de \mathbb{R}^3 . Déterminer $B = \operatorname{Mat}_{\mathscr{D}}(f)$.
- 3. Déterminer le noyau de f et son image.

Exercice 8. Soit $E = \mathcal{M}_2(\mathbb{R})$, on introduit

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \quad , \quad D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad , \quad f : \quad E \quad \to \quad E \quad ,$$

$$M \quad \mapsto \quad AM - MD \quad ,$$

ainsi que les matrices $P=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad Q=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad R=\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad S=\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.$

1. a. Montrer que $\mathscr{C} = (P, Q, R, S)$ est une base de E et déterminer la matrice de f dans la base \mathscr{C} .

ECG1 – Lycée Gabriel Touchard 2024-2025

- b. Déterminer le noyau et l'image de f, en précisant à chaque fois une base et la dimension.
- 2. a. Déterminer $B = \operatorname{Mat}_{\mathscr{B}}(f)$, où $\mathscr{B} = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ est la base canonique de $\mathscr{M}_2(\mathbb{R})$.
 - b. Répondre à nouveau à la question 1b à l'aide de la matrice B. On vérifiera qu'on obtient les mêmes résultats.

Exercice 9. On note $E = \mathbb{R}_2[x]$, et on note \mathscr{B} la base (P_0, P_1, P_2) de E, où $P_0(x) = 1$, $P_1(x) = x$ et $P_2(x) = x^2$.

On considère l'application, notée f, qui à tout polynôme $P \in \mathbb{R}_2[x]$ de E associe le polynôme $f(P) = Q_P$ défini par :

$$Q_P(x) = 2xP(x) - (x^2 - 1)P'(x).$$

- 1. a. Montrer que f est un endomorphisme de E.
 - b. Écrire la matrice A de f dans la base \mathscr{B} .
- 2. a. Déterminer Im f et donner sa dimension.
 - b. Déterminer Ker f.
- 3. a. À l'aide de la méthode du pivot de Gauss, déterminer les réels λ pour lesquels $A \lambda I_3$ n'est pas inversible.
 - b. Déterminer, en fonction de $\lambda \in \mathbb{R}$, le noyau de $f \lambda \operatorname{Id}$.

Exercice 10.

Soit $\mathbb{R}_2[x]$ l'ensemble des polynômes sur \mathbb{R} , de degré inférieur ou égal à 2. Soit $\varphi: P \mapsto P + P'$, définie sur $\mathbb{R}_2[x]$.

- 1. Montrer que φ est un endomorphisme de $\mathbb{R}_2[x]$.
- 2. Déterminer $Ker(\varphi)$. En déduire que φ est un automorphisme de $\mathbb{R}_2[x]$.
- 3. Déterminer la matrice M de φ dans la base canonique de $\mathbb{R}_2[x]$. Calculer M^{-1} .
- 4. En déduire l'unique polynôme $P \in \mathbb{R}_2[x]$ tel que $P(x) + P'(x) = x^2 + x + 1$.

Exercice 11. Soit (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 . On définit l'endomorphisme Φ de \mathbb{R}^4 par :

$$\Phi(e_i) = e_{i+1}$$
, pour $1 \le i \le 3$ et $\Phi(e_4) = e_1$.

- 1. Montrer sans calcul que Φ est un automorphisme.
- 2. Déterminer la matrice A de Φ dans la base canonique.

3. Déterminer l'isomorphisme réciproque de Φ .

Exercice 12. Soient p et q deux projecteurs associés d'un espace vectoriel E et f l'endomorphisme de E défini par f = 3p - q.

- 1. Vérifier que le polynôme P défini par $P(x) = x^2 2x 3$ est un polynôme annulateur de f.
- 2. En déduire que f est bijectif et déterminer f^{-1} en fonction de f et Id_E , puis en fonction de p et q.

Exercice 13. Soient n un entier naturel supérieur ou égal à 2 et $A \in \mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe un entier naturel p non nul tel que $A^p = 0$ et $A^{p-1} \neq 0$.

- 1. Montrer que A n'est pas inversible.
- 2. Vérifier que pour tout $x \in \mathbb{R}$, $x^p = 1 (1 x)(1 + x + \cdots + x^{p-1})$.
- 3. En remarquant que le polynôme P défini par $P(x) = x^p$ est un polynôme annulateur de A, montrer que I A est inversible et déterminer son inverse.
- 4. Montrer également que I + A est inversible et déterminer son inverse.

Exercice 14. On se place sur l'espace vectoriel $E = \mathscr{C}^1(\mathbb{R}, \mathbb{R})$. On considère les fonctions $f_1: x \mapsto 1$, $f_2: x \mapsto e^x$, et $f_3: x \mapsto e^{-x}$. On note $F = \text{Vect}(f_1, f_2, f_3)$ et

$$\varphi: E \to E$$

$$f \mapsto f'$$

- 1. Vérifier que $\mathscr{B} = (f_1, f_2, f_3)$ est une base de F.
- 2. Montrer que φ est un endomorphisme de F.
- 3. Donner la matrice A de φ dans la base \mathscr{B} .

Exercice 15. Soit φ un endomorphisme non nul de \mathbb{R}^3 tel que $\varphi^2 = 0_{\mathscr{L}(E)}$. On se propose de montrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de φ est

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- 1. a. Montrer que $\operatorname{Im} \varphi \subset \operatorname{Ker} \varphi$.
 - b. En déduire que dim $(\operatorname{Im} \varphi) = 1$ et dim $(\operatorname{Ker} \varphi) = 2$.

ECG1 – Lycée Gabriel Touchard 2024-2025

- 2. a. Justifier qu'il existe un vecteur u de \mathbb{R}^3 tel que $\varphi(u) \neq 0_{\mathbb{R}^3}$. On note $v = \varphi(u)$.
 - b. Montrer qu'il existe un vecteur w tel que (v, w) soit une base de Ker φ . Montrer que la famille (v, w, u) est une base de \mathbb{R}^3 . Quelle est la matrice de φ dans cette base?

Exercice 16. On se place sur l'espace vectoriel $\mathbb{R}_n[x]$, où $n \in \mathbb{N}^*$. On note \mathscr{B} sa base canonique, donnée par (P_0, P_1, \dots, P_n) , où $P_0(x) = 1, P_1(x) = x, \dots, P_n(x) = x^n$.

1. Étude d'un endomorphisme de $\mathbb{R}_n[x]$.

On désigne par a un nombre entier fixé, et on définit, pour tout polynôme appartenant $P \in \mathbb{R}_n[x]$, le polynôme Q_P donné par $Q_P(x) = P(x+a)$.

a. On introduit l'application $\Phi_a: E \to \mathbb{R}[x]$.

Montrer que pour tout $P \in \mathbb{R}_n[x]$, on a $Q_P \in \mathbb{R}_n[x]$, et justifier que Φ_a définit un endomorphisme de $\mathbb{R}_n[x]$.

- b. Déterminer la matrice M_a de l'endomorphisme Φ_a dans la base \mathcal{B} , et montrer que M_a est inversible. Qu'en déduire pour Φ_a ?
- c. Pour $a \neq 0$, déterminer les valeurs $\lambda \in \mathbb{R}$ telles que l'équation

$$\Phi_a(P) = \lambda P,$$

d'inconnue $P \in \mathbb{R}_n[x]$ ait des solutions non nulles. Pour ces valeurs de λ , déterminer toutes les solutions de l'équation.

- 2. Composition des endomorphismes Φ_a , $a \in \mathbb{Z}$.
 - a. Pour $a, b \in \mathbb{Z}$, expliciter les endomorphismes $\Phi_a \circ \Phi_b$ et $\Phi_b \circ \Phi_a$, et en déduire $(\Phi_a)^{-1}$.
 - b. Expliciter le carré et l'inverse de la matrice M_1 .

 Cas particulier. Écrire la matrice M_1 et son inverse dans le cas n=4.

Exercice 17. Si x_1, \ldots, x_n sont des réels, on appelle matrice de Vandermonde associée à ces réels la matrice de $\mathcal{M}_n(\mathbb{R})$ donnée par

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}.$$

Partie 1 : matrices de Vandermonde et inversibilité.

- 1. Montrer que s'il existe i, j tels que $i \neq j$ et $x_i = x_j$, alors V n'est pas inversible.
- 2. On souhaite montrer la réciproque du résultat précédent.
 - a. On considère l'application

$$\varphi: \mathbb{R}_{n-1}[x] \to \mathbb{R}^n$$

$$P \mapsto (P(x_1), \dots, P(x_n))$$

Écrire la matrice de φ dans les bases canoniques respectives de $\mathbb{R}_{n-1}[x]$ et \mathbb{R}^n .

b. En déduire que si les réels x_1, \ldots, x_n sont distincts, alors V est inversible.

Partie 2: familles de vecteurs propres associées à des valeurs propres distinctes.

Soient F un espace vectoriel de dimension finie n et $f \in \mathscr{L}(F)$. On suppose que

Soient E un espace vectoriel de dimension finie n, et $f \in \mathcal{L}(E)$. On suppose que u_1, \ldots, u_k sont des vecteurs non nuls de E et $\lambda_1, \ldots, \lambda_k$ sont des réels tels que

$$f(u_1) = \lambda_1 u_1, \quad f(u_2) = \lambda_2 u_2, \ldots, f(u_k) = \lambda_k u_k.$$

On dit que u_1, \ldots, u_k sont des vecteurs propres de f, associés aux valeurs propres respectives $\lambda_1, \ldots, \lambda_k$.

- 3. En utilisant une matrice de Vandermonde, montrer que si $\lambda_1, \ldots, \lambda_k$ sont distincts, alors la famille (u_1, \ldots, u_k) est libre.
- 4. On suppose maintenant que k = n, et $\lambda_1, \ldots, \lambda_n$ sont distincts.
 - a. Justifier que $\mathscr{B} = (u_1, \ldots, u_n)$ est une base de E.
 - b. Écrire la matrice de f dans la base \mathscr{B} .